P P SAVANI UNIVERSITY

11111511

Second Semester of B. Tech. Examination May 2019

SESH1020 Linear Algebra & Vector Calculus

14.05	.201	9, Tuesday Time: 12:30 p.m. To 03:00 p.m. Maximum Ma	rke 60	
Instru		15;	11 KS; O(
1. Th	ie que	estion paper comprises of two sections.		
2. Se	ction	ion I and II must be attempted in separate answer sheets.		
4. Us	e of s	uitable assumptions and draw neat figures wherever required. cientific calculator is allowed.		
		SECTION - I		
Q-1		Answer the following. (Any Five)		
	(i)	Show that matrix multiplication is not commutative AB ≠BA in general.	[05]	
	(ii)	Find the eigenvalues of $A = \begin{bmatrix} 2 & 0 \\ 2 & 3 \end{bmatrix}$.		
	(iii)			
	(iv)	What condition must be satisfied for being linear transformation?		
	(v)	Define Kernel of Linear Transformation.		
	(vi)	"Two forces applied at the same time & at the same spot will have same effect of certain		
198		single force, is example of which vector operation?		
Q-2(a)	Answer the following. (Any Two)	[04]	
	1.	[0 6 7]	[04]	
	1.	Find the rank of the matrix $A = \begin{bmatrix} 0 & 6 & 7 \\ -5 & 4 & 2 \\ 1 & -2 & 0 \end{bmatrix}$.		
	2.	Prove or disapprove that the set $W = ((a, 2), a, b, 1)$		
	3.	Prove or disapprove that the set $W = \{(a, 2a, a + 1) a \in R\}$ is not a vector sub-space of R^3 .		
		Determine whether the vector $v = (-5,11,-7)$ is a linear combination of vectors $v_1 = (1,-2,2), v_2 = (0,5,5)$ and $v_3 = (2,0,8)$.		
Q-2(b)	Answer the following. (Any Two)		
		$\begin{bmatrix} -1 & 2+i & 5-2i \end{bmatrix}$	[06]	
	1.	Prove that the matrix $A = \begin{bmatrix} -1 & 2+i & 5-3i \\ 2-i & 7 & 5i \\ 5+3i & -5i & 2 \end{bmatrix}$ is a Hermitian & <i>iA</i> is Skew Hermitian.		
2	2.	state dutily schwarz inequality in K". Hence, verify the same & also find soc a for the		
		$u_1 - (0, -2, 2, 1), u_2 = (-1, -1, 1, 1)$		
3	3.	Find the value of a for which the following system of equation over \mathbb{R} is consistent		
0		$x_1 + 3x_2 - x_3 - 1$, $2x_1 + 7x_2 + ax_3 = 3$, $x_1 + ax_2 - 7x_3 = 0$		
Q-3		Answer the following. (Any Three)	TOT1	
		[2 1 1]	[05]	
	(i)	Determine algebraic & geometric multiplicity of the matrix $A = \begin{bmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 0 & 0 & 1 \end{bmatrix}$.		
		Find the characteristic and [2 1 1]		
((ii)	Find the characteristic equation of the matrix $A = \begin{bmatrix} 2 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 2 \end{bmatrix}$ & hence, find the matrix		
		represented by $A^8-5A^7+7A^6-3A^5+A^4-5A^3+8A^2-2A+1$		
		$\begin{bmatrix} 1 & -3 & 4 & -2 & 5 & 4 \end{bmatrix}$		
(1	ш) .	Find basis for the row & column space of $A = \begin{bmatrix} 1 & -3 & 4 & -2 & 5 & 4 \\ 1 & -6 & 9 & -1 & 8 & 2 \\ 2 & -6 & 9 & -1 & 9 & 7 \\ -1 & 3 & -4 & 2 & -5 & -4 \end{bmatrix}$.		
		$\begin{bmatrix} -1 & 3 & -4 & 2 & -5 & -4 \end{bmatrix}$		

(iv) Consider the basis
$$S = \{v_1, v_2\}$$
 for R^2 , where $v_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ & $v_2 = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$. Let $T: R^2 \to P_2$ be the linear transformation such that $T(v_1) = 2 - 3x + x^2$, $T(v_2) = 1 - x^2$. Find $T\begin{bmatrix} a \\ b \end{bmatrix}$ & then find $T\begin{bmatrix} -1 \\ 2 \end{bmatrix}$.

SECTION - II

Q-1 Answer the following. (Any Five)

(i) For a vectors
$$u \& v$$
, $||u + v||^2 - ||u - v||^2$ is _____.

a) $< u, v >$ b) $2 < u, v >$ c) $3 < u, v >$ d) $4 < u, v >$

(ii) The angle between $u = (1,0,0) \& v = (0,1,0)$ is _____ °

a) 90 b) 45 c) 60 d) 0

- (iii) The arc length of y = 5 from x=0 to x = 16 is a) 5 b) 0 c) 16 d) 4
- (iv) A vector point function is called a solenoidal vector function if a) div V = 0 b) div V > 0 c) div V < 0 d) $div V \neq 0$
- (v) For the Stokes's theorem direction of curve C is
 a) Clockwise
 b) Anticlockwise
 c) Both
 d) None of these
 (vi) The line integral for the vector field F = x²i xy j from the origin O to the point P(1.1) is
- (vi) The line integral for the vector field $F = x^2i xyj$ from the origin 0 to the point P(1,1) is a) 2 b) 1 c) 0 d) $\frac{1}{12}$
- Q 2 (a) Answer the following. (Any Two)
 1. Determine whether there exists scalar k & p such that vectors u = (2, k, 6), v = (p, 5, 3) & w = (1, 2, 3) are mutually orthogonal with respect to the Euclidean inner product.
 - 2. If $\phi = x^2 + y^2 + z^2 8$ then find $grad \phi$ at the point (2,0,2).
 - 3. State Green & Stokes's Theorem.
- Q-2 (b) Answer the following. (Any Two)

 1. Calculate curl \bar{F} if $\bar{F} = xyz$ $i + 3x^2y$ $j + (xz^2 y^2z)k$ at the point (1, -1, 1).
 - 2. If S is any closed surface enclosing volume V & $\overline{F} = ax \ i + by \ j + cz \ k$ then prove that $\iint_S \overline{F} \cdot \hat{n} dS = (a + b + c)V.$
 - 3. Show that the set of vectors $u_1 = \left(\frac{1}{5}, \frac{1}{5}, \frac{1}{5}\right)$, $u_2 = \left(\frac{-1}{2}, \frac{1}{2}, 0\right)$ & $u_3 = \left(\frac{1}{3}, \frac{1}{3}, \frac{-2}{3}\right)$ is orthogonal with respect to the Euclidean inner product on \mathbb{R}^3 & then convert it to an orthonormal set by normalizing the vectors
- by normalizing the vectors.

 Q-3

 Answer the following. (Any Three)

 [05]

 (i) Find the least square solution of the linear system Ax = b & find the orthogonal projection
 - of b on the column space of A, where $A = \begin{bmatrix} 1 & -1 \\ 3 & 2 \\ -2 & 4 \end{bmatrix} & b = \begin{bmatrix} 4 \\ 1 \\ 3 \end{bmatrix}$.
 - (ii) Define Directional derivative & find directional derivative of $\phi = 4xz^2 + x^2yz$ at (1,-2,1) in the direction of 2i + 3j + 4k.
 - (iii) Show that $\overline{F} = (y^2 z^2 + 3yz 2x)\hat{i} + (3xz + 2xy)\hat{j} + (3xy 2xz + 2z)\hat{k}$ is both solenoidal & irrotational.
 - (iv) Evaluate $\iiint_v \nabla \overline{F} \, dV$ if $\overline{F} = x^2i + y^2j + z^2k$ and V is the volume of the region enclosed by the cube x = 0, x = 1, y = 0, y = 1, z = 0, z = 1.
